
Math 255A’ Lecture 17 Notes

Daniel Raban

November 6, 2019

1 Projections and Idempotents in Hilbert Spaces

1.1 Projections and idempotents

Let H be a Hilbert space over F.

Definition 1.1. An operator E ∈ B(H) is idempotent if E2 = E. E is a projection if
E2 = E and kerE = (ranE)⊥.

Proposition 1.1. Let E ∈ H.

1. E is idempotent if and only if 1− E is idempotent.

2. ranE = ker(1− E), kerE = ran(1− E), and these are closed subspaces of H.

3. kerE ∩ ranE = {0}, and kerE + ranE = H.

Proof. 1. (1− E)2 = 1− 2E + E2.

2.

h ∈ ranE ⇐⇒ hEk for some k

⇐⇒ Eh = E2k = Ek = h

⇐⇒ (1− E)h = 0.

3. h = Eh+ (1− E)h.

Remark 1.1. This also holds for Banach spaces, but we will not use it in that generality.

Proposition 1.2. Let P be a nonzero idempotent in B(H). The following are equivalent:

1. P is a projection.

2. P is the projection onto ranP .
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3. ‖P‖ = 1.

4. P = P ∗.

5. P is normal.

6. 〈Ph, h〉 ≥ 0 for all h (nonnegativity).

Proof. (1) =⇒ (2): Let M = ranP , which is closed. Then the projection PMh is
characterized by PMh − h ⊥ M ; we show that P has this property. For any h ∈ H,
h− Ph = (1− P )h ∈ ran(1− P ) = kerP , and ranP ⊆ (kerP )⊥. So h− Ph ⊥M .

(2) =⇒ (3): Write h1 = Ph, so h = h1 + (h− h1). Then ‖h1‖ ≤ ‖h‖ if h ∈M .
(3) =⇒ (1): We want to show that kerP = (ranP )⊥. We will show that (kerP )⊥ =

ranP . Assume h ⊥ kerP ; we will deduce that h ∈ ranP . We get

0 = 〈h, h− Ph〉 =⇒ ‖h‖2 = 〈h, Ph〉 =⇒ ‖h‖2 ≤ ‖h‖‖Ph‖ ≤ ‖P‖‖h‖2 = ‖h‖2,

so all these are equal. Then

‖h− Ph‖2 = ‖h‖2 + ‖Ph‖2 − 2 Re 〈h, Ph〉 = 0,

so h ∈ ranP .
Suppose h ∈ ranP . Then h = h1 = h2, where h1 ∈ (kerP )⊥, and h2 ∈ ranP . and is

orthogonal to ranP∩(kerP )⊥. This means h2 ∈ ranP ∩ kerP = {0}. so h = h1.
(2) =⇒ (4): Suppose P = PM . Then h = h1 + h2 and k = k1 + k2, where h1, k1 ∈M

and h2, k2 ⊥M . Then

〈Ph, k〉 = 〈h1, k1 + k2〉 = 〈h1, k1〉 = 〈h, Pk〉 .

(4) =⇒ (5): if P = P ∗, then P commutes with P ∗.
(5) =⇒ (1): If PP ∗ = P ∗P , then kerPP ∗ = kerP ∗P . If PP ∗h = 0, then

〈PP ∗h, h〉 = 〈P ∗h, P ∗h〉 = ‖P ∗h‖2,

so multiplying by an adjoint does not change the kernel. So ker(PP ∗) = ker(P ∗) =
(ranP )⊥. On the other hand, the same argument gives kerP ∗P = kerP .

(6) =⇒ (1): Suppose (1) does not hold, so there are an h = Ph and k ∈ kerP such
that 〈h, k〉 6= 0. Then

〈P (αh+ βk), αh+ βk〉 = 〈αh, αh+ βk〉 = ‖αh‖2 + αβ 〈h, k〉 ,

where 〈h, k〉 is not necessarily ≥ 0.
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1.2 Invariant and reducible subspaces

If P is a projection, then the map h 7→ (Ph, h − P − h) is a Hilbert space isomorphism
H → ranP⊕kerP . So if we have an operator on H, we can think of it as an operator acting
on this direct sum. More generally, if we have a closed subspace M , then H ∼= M ⊕M⊥.
If A ∈ B(H), we identify it with[

X Y
W Z

]
, Ah =

[
X Y
W Z

] [
h1
h2

]
,

where X ∈ B(M), Z ∈ B(M⊥), Y ∈ B(M⊥,M), and W ∈ B(M,M⊥). This gets us
partway to diagonalization if we can show that W,Y = 0.

Definition 1.2. A subspace M ≤ H is invariant for A ∈ B(H) if AM ⊆ M . M ≤ H is
reducing for A ∈ B(H) if AM ⊆M and AM⊥ ⊆M⊥.

Here’s how we find X,Y, Z,W :

A(h1+h2) = PA(h1+h2)+(1−P )A(h1+h2) = PAPh+PA(1−P )h+(1−P )APh+(1−P )A(1−P )h.

In other words, [
X Y
W Z

]
=

[
PA|M PA|M⊥

(1− P )A|M (1− P )A|M⊥

]
.

Proposition 1.3. 1. M is invariant for A ⇐⇒ PAP = AP ⇐⇒ W = 0.

2. M is reducing for A ⇐⇒ PA = AP ⇐⇒ W = 0, Y = 0.

Proof. 1. If PAP = AP , then W = (1− PA|M = (1− P )AP |M = 0.

If M is invariant, then [
X Y
0 Z

] [
h1
0

]
=

[
Xh1

0

]
.

2. If PA = AP , then PAP = AP , so M is invariant. On the other hand PA = PAP ,
so PA(1− P ) = 0. So M⊥ is invariant, making M reducing.

Idea on the route to the spectral theorem for self-adjoint operators: Break A into[
X 0
0 Y

]
such that X,Y are both “simpler” than A was originally. Keep doing this to “diagonalize”
A.
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