Math 255A' Lecture 17 Notes

Daniel Raban

November 6, 2019

1 Projections and Idempotents in Hilbert Spaces

1.1 Projections and idempotents

Let H be a Hilbert space over \mathbb{F} .

Definition 1.1. An operator $E \in \mathcal{B}(H)$ is **idempotent** if $E^2 = E$. E is a **projection** if $E^2 = E$ and $\ker E = (\operatorname{ran} E)^{\perp}$.

Proposition 1.1. Let $E \in \mathcal{H}$.

- 1. E is idempotent if and only if 1 E is idempotent.
- 2. $\operatorname{ran} E = \ker(1 E)$, $\ker E = \operatorname{ran}(1 E)$, and these are closed subspaces of H.
- 3. $\ker E \cap \operatorname{ran} E = \{0\}, \text{ and } \ker E + \operatorname{ran} E = H.$

Proof. 1.
$$(1-E)^2 = 1 - 2E + E^2$$
.

2.

$$h \in \operatorname{ran} E \iff hEk \text{ for some } k$$

 $\iff Eh = E^2k = Ek = h$
 $\iff (1 - E)h = 0.$

3.
$$h = Eh + (1 - E)h$$
.

Remark 1.1. This also holds for Banach spaces, but we will not use it in that generality.

Proposition 1.2. Let P be a nonzero idempotent in $\mathcal{B}(H)$. The following are equivalent:

- 1. P is a projection.
- 2. P is the projection onto ran P.

- 3. ||P|| = 1.
- 4. $P = P^*$.
- 5. P is normal.
- 6. $\langle Ph, h \rangle \geq 0$ for all h (nonnegativity).
- *Proof.* (1) \Longrightarrow (2): Let $M = \operatorname{ran} P$, which is closed. Then the projection $P_M h$ is characterized by $P_M h h \perp M$; we show that P has this property. For any $h \in H$, $h Ph = (1 P)h \in \operatorname{ran}(1 P) = \ker P$, and $\operatorname{ran} P \subseteq (\ker P)^{\perp}$. So $h Ph \perp M$.
 - (2) \implies (3): Write $h_1 = Ph$, so $h = h_1 + (h h_1)$. Then $||h_1|| \le ||h||$ if $h \in M$.
- (3) \Longrightarrow (1): We want to show that $\ker P = (\operatorname{ran} P)^{\perp}$. We will show that $(\ker P)^{\perp} = \operatorname{ran} P$. Assume $h \perp \ker P$; we will deduce that $h \in \operatorname{ran} P$. We get

$$0 = \langle h, h - Ph \rangle \implies ||h||^2 = \langle h, Ph \rangle \implies ||h||^2 \le ||h|| ||Ph|| \le ||P|| ||h||^2 = ||h||^2,$$

so all these are equal. Then

$$||h - Ph||^2 = ||h||^2 + ||Ph||^2 - 2\operatorname{Re}\langle h, Ph\rangle = 0,$$

so $h \in \operatorname{ran} P$.

Suppose $h \in \operatorname{ran} P$. Then $h = h_1 = h_2$, where $h_1 \in (\ker P)^{\perp}$, and $h_2 \in \operatorname{ran} P$. and is orthogonal to $\operatorname{ran} P \cap (\ker P)^{\perp}$. This means $h_2 \in \operatorname{ran} P \cap \ker P = \{0\}$. so $h = h_1$.

(2) \Longrightarrow (4): Suppose $P = P_M$. Then $h = h_1 + h_2$ and $k = k_1 + k_2$, where $h_1, k_1 \in M$ and $h_2, k_2 \perp M$. Then

$$\langle Ph, k \rangle = \langle h_1, k_1 + k_2 \rangle = \langle h_1, k_1 \rangle = \langle h, Pk \rangle.$$

- (4) \implies (5): if $P = P^*$, then P commutes with P^* .
- (5) \implies (1): If $PP^* = P^*P$, then $\ker PP^* = \ker P^*P$. If $PP^*h = 0$, then

$$\langle PP^*h, h\rangle = \langle P^*h, P^*h\rangle = ||P^*h||^2,$$

so multiplying by an adjoint does not change the kernel. So $\ker(PP^*) = \ker(P^*) = (\operatorname{ran} P)^{\perp}$. On the other hand, the same argument gives $\ker P^*P = \ker P$.

(6) \Longrightarrow (1): Suppose (1) does not hold, so there are an h = Ph and $k \in \ker P$ such that $\langle h, k \rangle \neq 0$. Then

$$\langle P(\alpha h + \beta k), \alpha h + \beta k \rangle = \langle \alpha h, \alpha h + \beta k \rangle = \|\alpha h\|^2 + \alpha \overline{\beta} \langle h, k \rangle,$$

where $\langle h, k \rangle$ is not necessarily ≥ 0 .

1.2 Invariant and reducible subspaces

If P is a projection, then the map $h \mapsto (Ph, h - P - h)$ is a Hilbert space isomorphism $H \to \operatorname{ran} P \oplus \ker P$. So if we have an operator on H, we can think of it as an operator acting on this direct sum. More generally, if we have a closed subspace M, then $H \cong M \oplus M^{\perp}$. If $A \in \mathcal{B}(H)$, we identify it with

$$\begin{bmatrix} X & Y \\ W & Z \end{bmatrix}, \qquad Ah = \begin{bmatrix} X & Y \\ W & Z \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix},$$

where $X \in \mathcal{B}(M)$, $Z \in \mathcal{B}(M^{\perp})$, $Y \in \mathcal{B}(M^{\perp}, M)$, and $W \in \mathcal{B}(M, M^{\perp})$. This gets us partway to diagonalization if we can show that W, Y = 0.

Definition 1.2. A subspace $M \leq H$ is **invariant** for $A \in \mathcal{B}(H)$ if $AM \subseteq M$. $M \leq H$ is **reducing** for $A \in \mathcal{B}(H)$ if $AM \subseteq M$ and $AM^{\perp} \subseteq M^{\perp}$.

Here's how we find X, Y, Z, W:

$$A(h_1+h_2) = PA(h_1+h_2) + (1-P)A(h_1+h_2) = PAPh + PA(1-P)h + (1-P)APh + (1-P)A(1-P)h.$$

In other words,

$$\begin{bmatrix} X & Y \\ W & Z \end{bmatrix} = \begin{bmatrix} PA|_M & PA|_{M^\perp} \\ (1-P)A|_M & (1-P)A|_{M^\perp} \end{bmatrix}.$$

Proposition 1.3. 1. M is invariant for $A \iff PAP = AP \iff W = 0$.

2. M is reducing for $A \iff PA = AP \iff W = 0, Y = 0$.

Proof. 1. If PAP = AP, then $W = (1 - PA)_M = (1 - P)AP_M = 0$.

If M is invariant, then

$$\begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix} \begin{bmatrix} h_1 \\ 0 \end{bmatrix} = \begin{bmatrix} Xh_1 \\ 0 \end{bmatrix}.$$

2. If PA = AP, then PAP = AP, so M is invariant. On the other hand PA = PAP, so PA(1-P) = 0. So M^{\perp} is invariant, making M reducing.

Idea on the route to the spectral theorem for self-adjoint operators: Break A into

$$\begin{bmatrix} X & 0 \\ 0 & Y \end{bmatrix}$$

such that X, Y are both "simpler" than A was originally. Keep doing this to "diagonalize" A.