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1 Projections and Idempotents in Hilbert Spaces
1.1 Projections and idempotents

Let H be a Hilbert space over F.

Definition 1.1. An operator E € B(H) is idempotent if £2 = E. E is a projection if
E? = E and ker E = (ran E)*.

Proposition 1.1. Let E € H.
1. E is idempotent if and only if 1 — E is idempotent.
2. ran E =ker(1 — E), ker E =ran(1l — E), and these are closed subspaces of H.
3. ker ENran E = {0}, and ker E +ran F = H.

Proof. 1. (1-E)>=1-2E+ E%

2.
h €ran ' <= hEk for some k
<« Eh=FE’k=FEk=h
<~ (1-E)h=0.
3. h=FEh+ (1— E)h. O

Remark 1.1. This also holds for Banach spaces, but we will not use it in that generality.
Proposition 1.2. Let P be a nonzero idempotent in B(H). The following are equivalent:
1. P s a projection.

2. P is the projection onto ran P.



3. |P|| =1.

4. P = P*.

5. P is normal.

6. (Ph,h) >0 for all h (nonnegativity).

Proof. (1) = (2): Let M = ran P, which is closed. Then the projection Pysh is
characterized by Pyyh — h 1L M; we show that P has this property. For any h € H,
h — Ph=(1— P)h €ran(l — P) = ker P, and ran P C (ker P)*. So h — Ph 1 M.

(2) = (3): Write hy = Ph, so h=h; + (h — hy). Then ||hy| < ||h]| if h € M.

(3) = (1): We want to show that ker P = (ran P)*. We will show that (ker P)* =
ran P. Assume h 1 ker P; we will deduce that h € ran P. We get

0=(h,h— Ph) = |h||* = (h, Ph) = |Ih|* < ||hll|PAIl < P[4 = 7],
so all these are equal. Then
I — Ph|* = |[a]]* + || PA|* — 2Re (h, Ph) =0,

so h € ran P.

Suppose h € ran P. Then h = hy = ho, where h; € (ker P)*, and hy € ran P. and is
orthogonal to ranP N(ker P)*. This means hy € ran P Nker P = {0}. so h = hy.

(2) = (4): Suppose P = Py;. Then h = hy + he and k = ki + ko, where hy, k1 € M
and hs, ks L. M. Then

(Ph,k) = (hy, k1 + ko) = (hy, k1) = (h, Pk).

(4)
(5)

= (5): if P = P*, then P commutes with P*.
= (1): If PP* = P*P, then ker PP* = ker P*P. If PP*h = 0, then
(PP*h,h) = (P*h, P*h) = ||P*h|?,

so multiplying by an adjoint does not change the kernel. So ker(PP*) = ker(P*) =
(ran P)*. On the other hand, the same argument gives ker P*P = ker P.

(6) = (1): Suppose (1) does not hold, so there are an h = Ph and k € ker P such
that (h, k) # 0. Then

(P(ah + k), ah + Bk) = (ah, ah + Bk) = ||ah|® + o (b, k) ,

where (h, k) is not necessarily > 0. O



1.2 Invariant and reducible subspaces

If P is a projection, then the map h — (Ph,h — P — h) is a Hilbert space isomorphism
H — ran P@ker P. So if we have an operator on H, we can think of it as an operator acting
on this direct sum. More generally, if we have a closed subspace M, then H = M & M*.
If A€ B(H), we identify it with

Wzl A=l )

where X € B(M), Z € B(M*), Y € B(M*+,M), and W € B(M,M~*). This gets us
partway to diagonalization if we can show that W)Y = 0.

Definition 1.2. A subspace M < H is invariant for A € B(H) if AM C M. M < H is
reducing for A € B(H) if AM C M and AM+ C M*.

Here’s how we find X, Y, Z, W:
A(hi+hg) = PA(h1+h2)+(1—P)A(h1+hy) = PAPh+PA(1—P)h+(1—P)APh+(1—P)A(1—P)h.
In other words,

X Y] [ PAu PA|y.
W Z

A =P)Alm (1= P)Ap
Proposition 1.3. 1. M is invariant for A < PAP = AP <— W =0.
2. M is reducing for A < PA= AP < W =0,Y =0.

Proof. 1. If PAP = AP, then W = (1 — PA|y = (1 — P)AP|y = 0.
If M is invariant, then
X Y| |h| (XM
0 Z||0| | 0 |-

2. If PA = AP, then PAP = AP, so M is invariant. On the other hand PA = PAP,
so PA(1 — P) =0. So M* is invariant, making M reducing. O
Idea on the route to the spectral theorem for self-adjoint operators: Break A into
X 0
0 Y
such that X, Y are both “simpler” than A was originally. Keep doing this to “diagonalize”
A.
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